Activity Report

Guest

Log In

College Algebra

Demo Assignment

HOW YOU DID

You can try and practice on 27 more questions

review

Let's have another look at your answers

$\def\VxSubOneSub{5}\def\VPlusxSubOneSub{+5}\def\VMinusxSubOneSub{-5}\def\VySubOneSub{7}\def\VPlusySubOneSub{+7}\def\VMinusySubOneSub{-7}\def\VxSubTwoSub{-2}\def\VPlusxSubTwoSub{-2}\def\VMinusxSubTwoSub{+2}\def\VySubTwoSub{8}\def\VPlusySubTwoSub{+8}\def\VMinusySubTwoSub{-8}\def\Vm{\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}\def\VPlusm{+\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}\def\VMinusm{-\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}$

Find the equation of the line passing through the points $\left(5\,,7\right)$ and $\left(-2\,,\,8\right)$. Write the final equation in slope-intercept form.


answer

Not attempted yet

redo problem



Comments

$\def\VqSubOneSub{3}\def\VPlusqSubOneSub{+3}\def\VMinusqSubOneSub{-3}\def\VqSubTwoSub{0}\def\VPlusqSubTwoSub{+0}\def\VMinusqSubTwoSub{-0}\def\VqSubThreeSub{18}\def\VPlusqSubThreeSub{+18}\def\VMinusqSubThreeSub{-18}\def\Vp{0.30}\def\VPlusp{+0.30}\def\VMinusp{-0.30}\def\Va{54}\def\VPlusa{+54}\def\VMinusa{-54}$

Teresa bought a pair of shoes on sale for $\$\Va $. The sale price was $\VqSubOneSub 0\%$ of the regular price. Find the regular price $n$ of the shoes.


answer

Not attempted yet

redo problem



Comments

$\def\VaSubOneSub{12}\def\VPlusaSubOneSub{+12}\def\VMinusaSubOneSub{-12}\def\VbSubOneSub{-5}\def\VPlusbSubOneSub{-5}\def\VMinusbSubOneSub{+5}\def\VaSubTwoSub{-1}\def\VPlusaSubTwoSub{-1}\def\VMinusaSubTwoSub{+1}\def\VbSubTwoSub{-9}\def\VPlusbSubTwoSub{-9}\def\VMinusbSubTwoSub{+9}\def\Vb{113}\def\VPlusb{+113}\def\VMinusb{-113}\def\Va{33}\def\VPlusa{+33}\def\VMinusa{-33}\def\Vd{82}\def\VPlusd{+82}\def\VMinusd{-82}$

Evaluate the following expression
$$\frac{\VaSubOneSub \VPlusbSubOneSub i}{\VaSubTwoSub \VPlusbSubTwoSub i}\,$$


answer

Not attempted yet

redo problem



Comments

Describe all values $x$ within a distance of $7$ from the number $5$ in interval notation.


answer

Not attempted yet

redo problem



Comments

$\def\Vfx{\frac{5}{x^{2}-4}}\def\VPlusfx{+\frac{5}{x^{2}-4}}\def\VMinusfx{-\frac{5}{x^{2}-4}}\def\Vgx{\frac{2}{x-1}}\def\VPlusgx{+\frac{2}{x-1}}\def\VMinusgx{-\frac{2}{x-1}}$

Given $$f\left(x\right)\,=\,\frac{5}{x^{2}-4}$$ and $$g\left(x\right)=\frac{2}{x-1}$$, find the domains of both $f\left(g\left(x\right)\right)$ and $g\left(f\left(x\right)\right)$ as a union of intervals written in natural order.


answer

Not attempted yet

redo problem



Comments

Solve $$\left|x-27\right|-4=-6$$


answer

Not attempted yet

redo problem



Comments

$\def\Vm{-28000}\def\VPlusm{-28000}\def\VMinusm{+28000}\def\Vb{87500}\def\VPlusb{+87500}\def\VMinusb{-87500}\def\VMw{mw+b}\def\VPlusMw{+mw+b}\def\VMinusMw{-mw+b}$

A couple plans to go on a month-long vacation to Singapore (assume that one month is four weeks). They set aside $\$87,500$ for the trip and are planning to spend $\$28,000$ each week. 

  1. Write a linear model for the amount of money $M$ they have remaining after $w$ weeks.
  2. Will they be able to afford their entire trip to paid for from their savings?

answer

Not attempted yet

redo problem



Comments

Give all the possible rational zeros for $f(x)=3x^5 - 5x^3 + 4$

Enter your answers in the increasing order.


answer

Not attempted yet

redo problem



Comments

$\def\Va{10}\def\VPlusa{+10}\def\VMinusa{-10}\def\Vb{10}\def\VPlusb{+10}\def\VMinusb{-10}\def\Vc{-7}\def\VPlusc{-7}\def\VMinusc{+7}\def\Vk{1}\def\VPlusk{+1}\def\VMinusk{-1}\def\Vd{4}\def\VPlusd{+4}\def\VMinusd{-4}\def\VnSubOneSub{3}\def\VPlusnSubOneSub{+3}\def\VMinusnSubOneSub{-3}\def\VnSubTwoSub{5}\def\VPlusnSubTwoSub{+5}\def\VMinusnSubTwoSub{-5}\def\VnSubThreeSub{10}\def\VPlusnSubThreeSub{+10}\def\VMinusnSubThreeSub{-10}$

Identify the multiplicity of the zeros of $$f\left(x\right)=\Va x\left(x\VMinusb \right)^{\VnSubOneSub }\left(x\VMinusc \right)^{\VnSubTwoSub }\left(x\VMinusd \right)^{\VnSubThreeSub }$$


answer

Not attempted yet

redo problem



Comments

$\def\Vfx{\frac{1}{x-4}}\def\VPlusfx{+\frac{1}{x-4}}\def\VMinusfx{-\frac{1}{x-4}}\def\Vgx{\frac{1}{x}+4}\def\VPlusgx{+\frac{1}{x}+4}\def\VMinusgx{-\frac{1}{x}+4}$

Are $f(x)=\frac{1}{x-4}$ and $g(x)=\frac{1}{x}+4$  inverses of each other for $x\neq 0, 4$?


answer

Not attempted yet

redo problem



Comments

$\def\Va{1900}\def\VPlusa{+1900}\def\VMinusa{-1900}\def\Vp{4}\def\VPlusp{+4}\def\VMinusp{-4}\def\Vk{7600}\def\VPlusk{+7600}\def\VMinusk{-7600}\def\VV{1900}\def\VPlusV{+1900}\def\VMinusV{-1900}\def\VpSubOneSub{2}\def\VPluspSubOneSub{+2}\def\VMinuspSubOneSub{-2}$

The volume $V$ of a gas in a container varies inversely with the pressure of the gas $p$. If a container of gas has a volume of $\VV \uL$ when the pressure is $\Vp $ atm.

  • Write an equation that relates the volume to the pressure
  • If the pressure is $\VpSubOneSub $ atm, what will the volume of the gas be?

answer

Not attempted yet

redo problem



Comments

Write the following exponential equation in logarithmic form  $$3^{4}=81$$


answer

Not attempted yet

redo problem



Comments

Expand the following logarithmic expression
$$\log_{2}\left(\frac{100x\left(x+2\right)^{3}}{x-8}\right)$$


answer

Not attempted yet

redo problem



Comments

Solve for $x$.$4\log_{2}x-6=14$


answer

Not attempted yet

redo problem



Comments

$\def\Va{9}\def\VPlusa{+9}\def\VMinusa{-9}\def\Vb{3}\def\VPlusb{+3}\def\VMinusb{-3}\def\Vy{9\cdot\left(2^{3t}\right)}\def\VPlusy{+9\cdot\left(2^{3t}\right)}\def\VMinusy{-9\cdot\left(2^{3t}\right)}\def\VtSubOneSub{0}\def\VPlustSubOneSub{+0}\def\VMinustSubOneSub{-0}\def\VtSubTwoSub{1}\def\VPlustSubTwoSub{+1}\def\VMinustSubTwoSub{-1}\def\VtSubThreeSub{2}\def\VPlustSubThreeSub{+2}\def\VMinustSubThreeSub{-2}\def\VtSubFourSub{3}\def\VPlustSubFourSub{+3}\def\VMinustSubFourSub{-3}\def\VtSubFiveSub{4}\def\VPlustSubFiveSub{+4}\def\VMinustSubFiveSub{-4}\def\VySubOneSub{9}\def\VPlusySubOneSub{+9}\def\VMinusySubOneSub{-9}\def\VySubTwoSub{72}\def\VPlusySubTwoSub{+72}\def\VMinusySubTwoSub{-72}\def\VySubThreeSub{576}\def\VPlusySubThreeSub{+576}\def\VMinusySubThreeSub{-576}\def\VySubFourSub{4608}\def\VPlusySubFourSub{+4608}\def\VMinusySubFourSub{-4608}\def\VySubFiveSub{36864}\def\VPlusySubFiveSub{+36864}\def\VMinusySubFiveSub{-36864}\def\Vr{8}\def\VPlusr{+8}\def\VMinusr{-8}$

The following data represent the growth of a bacteria population over time $t$.

 

Time (hrs) $\VtSubOneSub $ $\VtSubTwoSub $ $\VtSubThreeSub $ $\VtSubFourSub $ $\VtSubFiveSub $
Bacteria Population $\VySubOneSub $ $\VySubTwoSub $ $\VySubThreeSub $ $\VySubFourSub $ $\VySubFiveSub $

 

Determine:

  • The equation that represents the bacteria population $y$ at a time $t$

  • The doubling time

answer

Not attempted yet

redo problem



Comments

Find the cosine of $\angle X$.


answer

Not attempted yet

redo problem



Comments

$\def\Va{12}\def\VPlusa{+12}\def\VMinusa{-12}\def\Vb{35}\def\VPlusb{+35}\def\VMinusb{-35}\def\Vc{37}\def\VPlusc{+37}\def\VMinusc{-37}\def\Vx{\frac{37}{12}}\def\VPlusx{+\frac{37}{12}}\def\VMinusx{-\frac{37}{12}}\def\Vy{\frac{37}{35}}\def\VPlusy{+\frac{37}{35}}\def\VMinusy{-\frac{37}{35}}\def\Vz{\frac{35}{12}}\def\VPlusz{+\frac{35}{12}}\def\VMinusz{-\frac{35}{12}}$

Given the following right angle triangle, determine the $\csc \theta,\sec \theta,\;\text{and}\;\cot \theta$


answer

Not attempted yet

redo problem



Comments

Which of the following is a periodic function.

 


answer

Not attempted yet

redo problem



Comments

$\def\Vtheta{\cos^{-1}\left(\frac{-{\sqrt[]{19}}}{10}\right)}\def\VPlustheta{+\cos^{-1}\left(\frac{-{\sqrt[]{19}}}{10}\right)}\def\VMinustheta{-\cos^{-1}\left(\frac{-{\sqrt[]{19}}}{10}\right)}$

If $\sin\theta=\frac{9}{10}$ in Quadrant II, find $\sin(2\theta)$, $\cos(2\theta)$, and $\tan(2\theta)$ using the double angle identities.


answer

Not attempted yet

redo problem



Comments

$\def\Va{2}\def\VPlusa{+2}\def\VMinusa{-2}\def\Vb{3}\def\VPlusb{+3}\def\VMinusb{-3}\def\Vc{4}\def\VPlusc{+4}\def\VMinusc{-4}\def\Vgamma{\arccos\left(\frac{c^{2}-a^{2}-b^{2}}{-2ab}\right)}\def\VPlusgamma{+\arccos\left(\frac{c^{2}-a^{2}-b^{2}}{-2ab}\right)}\def\VMinusgamma{-\arccos\left(\frac{c^{2}-a^{2}-b^{2}}{-2ab}\right)}\def\VgammaSubrSub{\left(\round{2}{\gamma \cdot180/\pi}\right)\udeg}\def\VPlusgammaSubrSub{+\left(\round{2}{\gamma \cdot180/\pi}\right)\udeg}\def\VMinusgammaSubrSub{-\left(\round{2}{\gamma \cdot180/\pi}\right)\udeg}\def\Valpha{\arcsin\left(\frac{a\sin\left(\gamma_{r}\right)}{c}\right)}\def\VPlusalpha{+\arcsin\left(\frac{a\sin\left(\gamma_{r}\right)}{c}\right)}\def\VMinusalpha{-\arcsin\left(\frac{a\sin\left(\gamma_{r}\right)}{c}\right)}\def\ValphaSubrSub{\left(\round{2}{\alpha \cdot180/\pi}\right)\udeg}\def\VPlusalphaSubrSub{+\left(\round{2}{\alpha \cdot180/\pi}\right)\udeg}\def\VMinusalphaSubrSub{-\left(\round{2}{\alpha \cdot180/\pi}\right)\udeg}\def\Vbeta{180\udeg-\gamma_{r}-\alpha_{r}}\def\VPlusbeta{+180\udeg-\gamma_{r}-\alpha_{r}}\def\VMinusbeta{-180\udeg-\gamma_{r}-\alpha_{r}}$

Given a triangle with $a=2$, $b=3$, and $c=4$, find the angles.


answer

Not attempted yet

redo problem



Comments

$\def\VVecuVec{\left(6-30,13-20\right)}\def\VPlusVecuVec{+\left(6-30,13-20\right)}\def\VMinusVecuVec{-\left(6-30,13-20\right)}\def\VVecvVec{\left(-21-\left(-1\right),-17-\left(-2\right)\right)}\def\VPlusVecvVec{+\left(-21-\left(-1\right),-17-\left(-2\right)\right)}\def\VMinusVecvVec{-\left(-21-\left(-1\right),-17-\left(-2\right)\right)}\def\VthetaSubuSub{\arctan\left(\frac{7}{24}\right)}\def\VPlusthetaSubuSub{+\arctan\left(\frac{7}{24}\right)}\def\VMinusthetaSubuSub{-\arctan\left(\frac{7}{24}\right)}\def\VthetaSubvSub{\arctan\left(\frac{3}{4}\right)}\def\VPlusthetaSubvSub{+\arctan\left(\frac{3}{4}\right)}\def\VMinusthetaSubvSub{-\arctan\left(\frac{3}{4}\right)}\def\VdSubOneSub{196.26}\def\VPlusdSubOneSub{+196.26}\def\VMinusdSubOneSub{-196.26}\def\VdSubTwoSub{216.87}\def\VPlusdSubTwoSub{+216.87}\def\VMinusdSubTwoSub{-216.87}$

A vector $\vec{u}$ starts at $(30,20)$ and ends at $(6,13)$. Another vector $\vec{v}$ starts at $(-1,-2)$ and ends at $(-21,-17)$. Are the magnitudes the same? Are the directions the same?


answer

Not attempted yet

redo problem



Comments

An amusement park sold three kinds of tickets to its latest concert. The adult ticket sold for $\$20$, the student ticket for $\$18$, and the child ticket for $\$10$. The amusement park sold $300$ tickets and earned $\$5220$ in one night. The number of adult tickets sold is twice the number of child tickets sold. How many of each type did the amusement park sell?

Let $x$ be the number of adult tickets, $y$ be the number of student tickets, and $z$ be the number of child tickets.


answer

Not attempted yet

redo problem



Comments

Find the partial fraction decomposition of $$\frac{x^{2}+2x+5}{(x+1)^{3}}$$


answer

Not attempted yet

redo problem



Comments

$\def\VA{\begin{bmatrix} {5}&{-3}\\ {-1}&{7}\\ \end{bmatrix}}\def\VPlusA{+\begin{bmatrix} {5}&{-3}\\ {-1}&{7}\\ \end{bmatrix}}\def\VMinusA{-\begin{bmatrix} {5}&{-3}\\ {-1}&{7}\\ \end{bmatrix}}\def\VB{\begin{bmatrix} {2}&{1}\\ {-4}&{3}\\ \end{bmatrix}}\def\VPlusB{+\begin{bmatrix} {2}&{1}\\ {-4}&{3}\\ \end{bmatrix}}\def\VMinusB{-\begin{bmatrix} {2}&{1}\\ {-4}&{3}\\ \end{bmatrix}}$

Set $A=\begin{bmatrix} {5}&{-3}\\ {-1}&{7}\\ \end{bmatrix},\,B=\begin{bmatrix} {2}&{1}\\ {-4}&{3}\\ \end{bmatrix}$. Compute $AB$ and $BA$.


answer

Not attempted yet

redo problem



Comments

$\def\VaSubOneSub{3}\def\VPlusaSubOneSub{+3}\def\VMinusaSubOneSub{-3}\def\VaSubTwoSub{10}\def\VPlusaSubTwoSub{+10}\def\VMinusaSubTwoSub{-10}\def\VaSubThreeSub{17}\def\VPlusaSubThreeSub{+17}\def\VMinusaSubThreeSub{-17}\def\Vd{a_{2}-a_{1}}\def\VPlusd{+a_{2}-a_{1}}\def\VMinusd{-a_{2}-a_{1}}$
Find the number of terms $n$ in the arithmetic sequence below.
$\left\{3,10,17,\dots,87\right\}$

answer

Not attempted yet

redo problem



Comments

$\def\VaSubOneSub{2}\def\VPlusaSubOneSub{+2}\def\VMinusaSubOneSub{-2}\def\VaSubTwoSub{6}\def\VPlusaSubTwoSub{+6}\def\VMinusaSubTwoSub{-6}\def\VaSubThreeSub{10}\def\VPlusaSubThreeSub{+10}\def\VMinusaSubThreeSub{-10}\def\VaSubOneSixSub{62}\def\VPlusaSubOneSixSub{+62}\def\VMinusaSubOneSixSub{-62}\def\VaSubnSub{a_{16}}\def\VPlusaSubnSub{+a_{16}}\def\VMinusaSubnSub{-a_{16}}\def\Vd{a_{2}-a_{1}}\def\VPlusd{+a_{2}-a_{1}}\def\VMinusd{-a_{2}-a_{1}}\def\VS{\frac{16\left(a_{1}+a_{16}\right)}{2}}\def\VPlusS{+\frac{16\left(a_{1}+a_{16}\right)}{2}}\def\VMinusS{-\frac{16\left(a_{1}+a_{16}\right)}{2}}$

Find the sum of the arithmetic series below.


$2+6+10+\dots+62$


answer

Not attempted yet

redo problem



Comments

Use Pascal's Triangle to expand $$(2x-y)^{5}$$


answer

Not attempted yet

redo problem



Comments