Activity Report

Guest

Log In

Algebra and Trigonometry

Demo Worksheet

HOW YOU DID

You can try and practice on 21 more questions

review

Let's have another look at your answers

Find the domain of the function $$f\left(x\right)=\frac{x+3}{2x-3}$$


answer

Not attempted yet

redo problem



Comments

Find the domain and the range of the function $$f\left(x\right)=\frac{{\sqrt[\,]{3x-6}}}{x^{2}-6x+5}$$


answer

Not attempted yet

redo problem



Comments

$\def\Vfx{{\sqrt[3]{x}}}\def\VPlusfx{+{\sqrt[3]{x}}}\def\VMinusfx{-{\sqrt[3]{x}}}\def\Vgx{x^{2}+x-2}\def\VPlusgx{+x^{2}+x-2}\def\VMinusgx{-x^{2}+x-2}$

Let $f\left(x\right)={\sqrt[3]{x}}$, and  $g\left(x\right)=x^{2}+x-2$. Find $\left(f\circ g\right)\left(x\right)$ and $\left(g\circ f\right)\left(x\right)$.


answer

Not attempted yet

redo problem



Comments

$\def\Vfx{x+7}\def\VPlusfx{+x+7}\def\VMinusfx{-x+7}\def\Vgx{f\left(x+14\right)+14}\def\VPlusgx{+f\left(x+14\right)+14}\def\VMinusgx{-f\left(x+14\right)+14}$

Given $f\left(x\right)=x+7$, write a formula for the function obtained by shifting $f\left(x\right)$ up $14$ units and left $14$ units.


answer

Not attempted yet

redo problem



Comments

Solve $$\left|2x-3\right|=5$$


answer

Not attempted yet

redo problem



Comments

Assume that $f$ is a one-to-one function, and $f(2)=4$, $f(5)=-1$. What are the input and output values for the inverse function, $f^{-1}$?

Enter the input values in ascending order and output values as they correspond to the input values.


answer

Not attempted yet

redo problem



Comments

$\def\Va{7}\def\VPlusa{+7}\def\VMinusa{-7}\def\Vb{1}\def\VPlusb{+1}\def\VMinusb{-1}\def\Vc{50}\def\VPlusc{+50}\def\VMinusc{-50}\def\Vd{49}\def\VPlusd{+49}\def\VMinusd{-49}\def\Vy{x^{5}-50 x^{3}+49 x}\def\VPlusy{+x^{5}-50 x^{3}+49 x}\def\VMinusy{-x^{5}-50 x^{3}+49 x}$

Determine the $x-$intercepts and $y-$intercepts of $$y=x^{5}\VMinusc x^{3}\VPlusd x\,$$


answer

Not attempted yet

redo problem



Comments

Which of the following are graphs of polynomial functions?


A)      B)

 


C)      D)


answer

Not attempted yet

redo problem



Comments

$\def\Vfx{\frac{1}{x-4}}\def\VPlusfx{+\frac{1}{x-4}}\def\VMinusfx{-\frac{1}{x-4}}\def\Vgx{\frac{1}{x}+4}\def\VPlusgx{+\frac{1}{x}+4}\def\VMinusgx{-\frac{1}{x}+4}$

Are $f(x)=\frac{1}{x-4}$ and $g(x)=\frac{1}{x}+4$  inverses of each other for $x\neq 0, 4$?


answer

Not attempted yet

redo problem



Comments

Use the quotient rule for logarithms to fully expand this logarithmic expression.
$$\ln\left(\frac{\frac{14}{y}}{\frac{x}{5}}\div \frac{\frac{2}{x}}{\frac{y}{7}}\right)$$


answer

Not attempted yet

redo problem



Comments

$\def\Va{0.1}\def\VPlusa{+0.1}\def\VMinusa{-0.1}\def\Vb{5.8}\def\VPlusb{+5.8}\def\VMinusb{-5.8}\def\VI{5}\def\VPlusI{+5}\def\VMinusI{-5}\def\Vx{\frac{1-\log_{10}\left(5.8\right)}{0.1}}\def\VPlusx{+\frac{1-\log_{10}\left(5.8\right)}{0.1}}\def\VMinusx{-\frac{1-\log_{10}\left(5.8\right)}{0.1}}$

The intensity $I$, can be modelled by the equation $I=10^{1\VMinusa x}$ where $x$ is depth in meters. Determine the depth when $I=\Vb $


answer

Not attempted yet

redo problem



Comments

$\def\Vp{1.8}\def\VPlusp{+1.8}\def\VMinusp{-1.8}$

A foreman is supervising an electrician repairing a power line at the top of a pole. The foreman, who is $1.8\,\um$ tall, is standing $7.5\um$ away from the pole. The foreman needs to tilt their head back $$60^{\circ}$$ to see the electrician. How high from the ground is the electrician?


answer

Not attempted yet

redo problem



Comments

$\def\Vtheta{16}\def\VPlustheta{+16}\def\VMinustheta{-16}\def\VthetaSubOneSub{106\udeg}\def\VPlusthetaSubOneSub{+106\udeg}\def\VMinusthetaSubOneSub{-106\udeg}$

For the following angle $\theta$, determine the values of $\cos,\sin,\tan$. Round to two decimal points.


answer

Not attempted yet

redo problem



Comments

$\def\Va{30}\def\VPlusa{+30}\def\VMinusa{-30}\def\Vb{1.5}\def\VPlusb{+1.5}\def\VMinusb{-1.5}\def\Vtheta{\arcsin\left(\frac{6}{8}\right)}\def\VPlustheta{+\arcsin\left(\frac{6}{8}\right)}\def\VMinustheta{-\arcsin\left(\frac{6}{8}\right)}$

Find $\theta$. Give your answer in radians.


answer

Not attempted yet

redo problem



Comments

$\def\Vbeta{180\udeg-\gamma-\alpha}\def\VPlusbeta{+180\udeg-\gamma-\alpha}\def\VMinusbeta{-180\udeg-\gamma-\alpha}\def\Va{\frac{b\sin \alpha}{\sin \beta}}\def\VPlusa{+\frac{b\sin \alpha}{\sin \beta}}\def\VMinusa{-\frac{b\sin \alpha}{\sin \beta}}\def\Vc{\frac{b\sin \gamma}{\sin \beta}}\def\VPlusc{+\frac{b\sin \gamma}{\sin \beta}}\def\VMinusc{-\frac{b\sin \gamma}{\sin \beta}}\def\Vb{10}\def\VPlusb{+10}\def\VMinusb{-10}\def\Vgamma{50\udeg}\def\VPlusgamma{+50\udeg}\def\VMinusgamma{-50\udeg}\def\Valpha{82\udeg}\def\VPlusalpha{+82\udeg}\def\VMinusalpha{-82\udeg}$

Given $\alpha=82^\circ$, $\gamma = 50^\circ$, and $b=10$, find the remaining sides and angles. Round them to two decimal points.


answer

Not attempted yet

redo problem



Comments

$\def\Va{1200}\def\VPlusa{+1200}\def\VMinusa{-1200}\def\Vb{1050}\def\VPlusb{+1050}\def\VMinusb{-1050}\def\Vc{2100}\def\VPlusc{+2100}\def\VMinusc{-2100}\def\Vgamma{\arccos\left(\frac{a^{2}+b^{2}-c^{2}}{2ab}\right)}\def\VPlusgamma{+\arccos\left(\frac{a^{2}+b^{2}-c^{2}}{2ab}\right)}\def\VMinusgamma{-\arccos\left(\frac{a^{2}+b^{2}-c^{2}}{2ab}\right)}\def\VgammaSubrSub{137.82\udeg}\def\VPlusgammaSubrSub{+137.82\udeg}\def\VMinusgammaSubrSub{-137.82\udeg}$

Two planes leave the same airport at the same time. The first plane travels at $800\ukm/\uhr$ in one direction, and the second plane travels at $700\ukm/\uhr$ in another direction. After an hour and a half, the planes are $2100\ukm $ apart. What is the angle between the two planes? Round your final answer to two decimal places.


answer

Not attempted yet

redo problem



Comments

A group of people are going shopping at a mall together. A family purchases $5$ t-shirts, $1$ cap, and $2$ dresses, and the total is $\$198$. A couple buys $3$ t-shirts, $2$ caps, and $1$ dress, and spends $\$131$. Another couple buys $2$ t-shirts, $1$ cap and $1$ dress, and spends $\$93$. What is the cost of each item?

Let $x$ be the cost of a t-shirt, $y$ be the cost of a cap, and $z$ be the cost of a dress.


answer

Not attempted yet

redo problem



Comments

$\def\Vp{\frac{1}{16}}\def\VPlusp{+\frac{1}{16}}\def\VMinusp{-\frac{1}{16}}$

Identify if the image of a parabola follows the equation $y^2=4px$  or  $x^2=4py$.  Then, find the directrix, focus, and the endpoints of the latus rectum of the parabola below.


answer

Not attempted yet

redo problem



Comments

$\def\VaSubOneSub{5}\def\VPlusaSubOneSub{+5}\def\VMinusaSubOneSub{-5}\def\VaSubTwoSub{2}\def\VPlusaSubTwoSub{+2}\def\VMinusaSubTwoSub{-2}\def\Vr{\frac{a_{2}}{a_{1}}}\def\VPlusr{+\frac{a_{2}}{a_{1}}}\def\VMinusr{-\frac{a_{2}}{a_{1}}}$

Write a recursive formula for the geometric sequence below.
$$\left\{5,2,\frac{4}{5},\frac{8}{25},\dots\right\}$$


answer

Not attempted yet

redo problem



Comments

$\def\Vn{10}\def\VPlusn{+10}\def\VMinusn{-10}\def\VaSubOneSub{1}\def\VPlusaSubOneSub{+1}\def\VMinusaSubOneSub{-1}\def\VaSubOneZeroSub{19}\def\VPlusaSubOneZeroSub{+19}\def\VMinusaSubOneZeroSub{-19}$

Find the sum of the arithmetic series below.
$$\sum_{k=1}^{10}\left(2k-1\right)$$


answer

Not attempted yet

redo problem



Comments

One card is drawn from a full deck. What is the probability of drawing a black card or a face card (one of jack, queen, or king)?


answer

Not attempted yet

redo problem



Comments