Activity Report

Guest

Log In

Elementary Algebra

Demo Worksheet

HOW YOU DID

You can try and practice on 21 more questions

review

Let's have another look at your answers

Solve the equation for $x$, and write your answer in simplified form$$\frac{5}{12}\left(24x-36\right)=-\frac{1}{8}\left(32-16x\right)$$


answer

Not attempted yet

redo problem



Comments

$\def\Va{2}\def\VPlusa{+2}\def\VMinusa{-2}\def\Vb{14}\def\VPlusb{+14}\def\VMinusb{-14}\def\Vc{1}\def\VPlusc{+1}\def\VMinusc{-1}\def\Vd{-7}\def\VPlusd{-7}\def\VMinusd{+7}\def\Ve{-8}\def\VPluse{-8}\def\VMinuse{+8}\def\Vf{-9}\def\VPlusf{-9}\def\VMinusf{+9}$

Solve fro $x$.$$\Ve x\VPlusa >\Vb $$

$\Vf x\VPlusc <\Vd $


answer

Not attempted yet

redo problem



Comments

$\def\VsSubOneSub{52500}\def\VPlussSubOneSub{+52500}\def\VMinussSubOneSub{-52500}\def\VsSubTwoSub{60000}\def\VPlussSubTwoSub{+60000}\def\VMinussSubTwoSub{-60000}\def\Vd{s_{2}-s_{1}}\def\VPlusd{+s_{2}-s_{1}}\def\VMinusd{-s_{2}-s_{1}}$

John's yearly salary was 52,500 last year. This year he received a raise and his salary was increased to 60,000. What is the percent change?

Round to the nearest tenth of a percent.


answer

Not attempted yet

redo problem



Comments

Henry is mixing pistachios and almonds to make $12.5$ pounds of trail mix. Pistachios cost $\$16$ per pound and almonds cost $\$6$ per pound. How many pounds $x$ of pistachios and how many pounds of almonds should Henry use for the trail mix to cost $\$10$ per pound?


answer

Not attempted yet

redo problem



Comments

Sean was paid $\$50000$ for a cell phone app that he wrote and wants to invest it to save for his daughter's education. He wants to put some of the money into a bond that pays $4\%$ annual interest and the rest into stocks that pay $9\%$ annual interest. If he wants to earn $7.4\%$ annual interest on the total amount, how much money should he invest in each account?

Let $x$ be the amount invested in the $4\%$ bond.


answer

Not attempted yet

redo problem



Comments

Find the slope of the line shown below. 


answer

Not attempted yet

redo problem



Comments

$\def\Vm{-4}\def\VPlusm{-4}\def\VMinusm{+4}\def\VxSubOneSub{-6}\def\VPlusxSubOneSub{-6}\def\VMinusxSubOneSub{+6}\def\VySubOneSub{8}\def\VPlusySubOneSub{+8}\def\VMinusySubOneSub{-8}$

Find an equation of a line with slope $m=-4$  that contains the point $\left(-6,8\right)$. Write the equation in slope–intercept form.


answer

Not attempted yet

redo problem



Comments

A cup of coffee and two eggs cost $\$10.50$. Two cups of coffee and three eggs cost $\$18.00$. How much does one coffee and one egg cost on their own?

Let the cost of a cup of coffee be $c$ and the cost of an egg be $e$.


answer

Not attempted yet

redo problem



Comments

$\def\Vy{\frac{4}{3}x+1}\def\VPlusy{+\frac{4}{3}x+1}\def\VMinusy{-\frac{4}{3}x+1}$

Solve the following system of equations in two variables.
\begin{align*} {4x-3y}&={10}\\ {y\,}&={\frac{4}{3}x+1} \end{align*}


answer

Not attempted yet

redo problem



Comments

There are $300$ people at a wedding. The number of children is two-thirds of the number of adults at the wedding. Find the number of children and adults at the wedding.


answer

Not attempted yet

redo problem



Comments

$\def\Va{-5}\def\VPlusa{-5}\def\VMinusa{+5}\def\Vb{9}\def\VPlusb{+9}\def\VMinusb{-9}\def\Vc{2}\def\VPlusc{+2}\def\VMinusc{-2}\def\Vd{19}\def\VPlusd{+19}\def\VMinusd{-19}\def\Ve{-2}\def\VPluse{-2}\def\VMinuse{+2}\def\Vf{-9}\def\VPlusf{-9}\def\VMinusf{+9}\def\Vy{\left(a+d\right)q+\left(b+e\right)m+\left(c+f\right)z}\def\VPlusy{+\left(a+d\right)q+\left(b+e\right)m+\left(c+f\right)z}\def\VMinusy{-\left(a+d\right)q+\left(b+e\right)m+\left(c+f\right)z}$

Simplify $$y=\left(\Va q\VPlusb m\VPlusc z\right)+\left(\Vd q\VPluse m\VPlusf z\right)$$


answer

Not attempted yet

redo problem



Comments

$\def\Va{12}\def\VPlusa{+12}\def\VMinusa{-12}\def\Vb{9}\def\VPlusb{+9}\def\VMinusb{-9}\def\Vc{2}\def\VPlusc{+2}\def\VMinusc{-2}\def\Vd{11}\def\VPlusd{+11}\def\VMinusd{-11}\def\Ve{60}\def\VPluse{+60}\def\VMinuse{-60}\def\VRx{12x+9}\def\VPlusRx{+12x+9}\def\VMinusRx{-12x+9}\def\VCx{2x+11}\def\VPlusCx{+2x+11}\def\VMinusCx{-2x+11}\def\VPx{R\left(x\right)-C\left(x\right)}\def\VPlusPx{+R\left(x\right)-C\left(x\right)}\def\VMinusPx{-R\left(x\right)-C\left(x\right)}$

Carlos owns a business. He determines that he can model his  revenue $R\left(x\right)\,=\,\Va x\VPlusb $ and cost $C\left(x\right)\,=\,\Vc x\VPlusd $ where $x$ is the amount of units sold.

Given these functions, determine the net profit $P\left(x\right)$ that Carlos is making as a function of $x$. If Carlos sells $\Ve $ units, how much profit will he make?


answer

Not attempted yet

redo problem



Comments

$\def\Va{7}\def\VPlusa{+7}\def\VMinusa{-7}\def\Vb{18}\def\VPlusb{+18}\def\VMinusb{-18}\def\Vm{25}\def\VPlusm{+25}\def\VMinusm{-25}\def\Vn{126}\def\VPlusn{+126}\def\VMinusn{-126}\def\Vq{x+b}\def\VPlusq{+x+b}\def\VMinusq{-x+b}$

Given the quadratic $x^{2}\VPlusm x\VPlusn $ along with the partially factored form $\left(x\VPlusa \right)\left(x+b\right)$, find the missing number $b$ in the second factor.


answer

Not attempted yet

redo problem



Comments

$\def\Vc{-5}\def\VPlusc{-5}\def\VMinusc{+5}\def\Vd{9}\def\VPlusd{+9}\def\VMinusd{-9}\def\Vy{e\left(x^{2}+mx+n\right)}\def\VPlusy{+e\left(x^{2}+mx+n\right)}\def\VMinusy{-e\left(x^{2}+mx+n\right)}\def\Ve{4}\def\VPluse{+4}\def\VMinuse{-4}\def\Vm{4}\def\VPlusm{+4}\def\VMinusm{-4}\def\Vn{-45}\def\VPlusn{-45}\def\VMinusn{+45}\def\VbSubOneSub{16}\def\VPlusbSubOneSub{+16}\def\VMinusbSubOneSub{-16}\def\VcSubOneSub{-180}\def\VPluscSubOneSub{-180}\def\VMinuscSubOneSub{+180}$

Factor the quadratic 

$$\Ve x^{2}\VPlusbSubOneSub x\VPluscSubOneSub $$


answer

Not attempted yet

redo problem



Comments

$\def\Va{-2}\def\VPlusa{-2}\def\VMinusa{+2}\def\VbSubOneSub{18}\def\VPlusbSubOneSub{+18}\def\VMinusbSubOneSub{-18}\def\Vc{-5}\def\VPlusc{-5}\def\VMinusc{+5}\def\Vd{-2}\def\VPlusd{-2}\def\VMinusd{+2}\def\Ve{10}\def\VPluse{+10}\def\VMinuse{-10}\def\Vm{-86}\def\VPlusm{-86}\def\VMinusm{+86}\def\Vn{-36}\def\VPlusn{-36}\def\VMinusn{+36}$

Given the quadratic $\Ve x^{2}\VPlusm x\VPlusn $ along with the factored form $\;\left(\Vc x\VPlusa \right)\left(\Vd x+b\right)$, find the missing constant $b$.


answer

Not attempted yet

redo problem



Comments

$\def\Va{-18}\def\VPlusa{-18}\def\VMinusa{+18}\def\Vb{-19}\def\VPlusb{-19}\def\VMinusb{+19}\def\Vc{7}\def\VPlusc{+7}\def\VMinusc{-7}\def\Vy{\frac{-18x}{x-7}+\frac{-19}{x-7}}\def\VPlusy{+\frac{-18x}{x-7}+\frac{-19}{x-7}}\def\VMinusy{-\frac{-18x}{x-7}+\frac{-19}{x-7}}$

Evaluate

$$\Vy $$


answer

Not attempted yet

redo problem



Comments

Add and simlify$$\frac{7}{3xy+y^{2}}+\frac{4}{9x^{2}-y^{2}}\,$$


answer

Not attempted yet

redo problem



Comments

Solve $${\sqrt[\,]{3x-3}}+2={\sqrt[\,\,]{6x+1}}$$


answer

Not attempted yet

redo problem



Comments

Solve the radical equation
$$2{\sqrt[]{r+\frac{29}{4}}}=r+6$$


answer

Not attempted yet

redo problem



Comments

$\def\Vb{\frac{3}{2}}\def\VPlusb{+\frac{3}{2}}\def\VMinusb{-\frac{3}{2}}\def\Vc{\left(\frac{1}{2}b\right)^{2}}\def\VPlusc{+\left(\frac{1}{2}b\right)^{2}}\def\VMinusc{-\left(\frac{1}{2}b\right)^{2}}$

Determine the value of $c$ that makes  $m^{2}\VPlusb m+c$ a perfect square. Then write the result as a binomial squared.


answer

Not attempted yet

redo problem



Comments

$\def\Vn{3}\def\VPlusn{+3}\def\VMinusn{-3}\def\VmSubOneSub{4}\def\VPlusmSubOneSub{+4}\def\VMinusmSubOneSub{-4}\def\Vm{24}\def\VPlusm{+24}\def\VMinusm{-24}\def\Vp{9}\def\VPlusp{+9}\def\VMinusp{-9}$

Determine the values of $a$, $b$, and $c$ so that $\Vn x^{2}\VPlusm x\VPlusp =a\left(x-b\right)^{2}+c$


answer

Not attempted yet

redo problem



Comments