Activity Report

Guest

Log In

Pre Algebra

Demo Worksheet

HOW YOU DID

You can try and practice on 24 more questions

review

Let's have another look at your answers

Which of the following base-$10$ blocks represent the addition $2+5$

 

                


answer

Not attempted yet

redo problem



Comments

Simplify the following expression
$$50-3\cdot\left(1+3\right)^{2}$$


answer

Not attempted yet

redo problem



Comments

$\def\Va{2}\def\VPlusa{+2}\def\VMinusa{-2}\def\Vb{3}\def\VPlusb{+3}\def\VMinusb{-3}\def\Vc{8}\def\VPlusc{+8}\def\VMinusc{-8}$

What is the value of the expression  $$7a^{4}-\left(\left(3b\right)^{2}+9c\right)+4ac^{2}$$  if  $a=2$,  $b=3$ , $c\,=\,8$?


answer

Not attempted yet

redo problem



Comments

$\def\Va{17}\def\VPlusa{+17}\def\VMinusa{-17}\def\Vb{11}\def\VPlusb{+11}\def\VMinusb{-11}$

Solve for $x$ using the subtraction property of equality.\begin{align*} \separator {\Va +x}&={\Vb } \end{align*}


answer

Not attempted yet

redo problem



Comments

$\def\Vc{1000}\def\VPlusc{+1000}\def\VMinusc{-1000}\def\Vb{1600}\def\VPlusb{+1600}\def\VMinusb{-1600}$

Vince's car insurance has a  $\$\Vc $ deductible.  Find the amount $a$ that his insurance company will pay for a $\$\Vb $ claim.


answer

Not attempted yet

redo problem



Comments

$\def\VnSubTwoSub{3}\def\VPlusnSubTwoSub{+3}\def\VMinusnSubTwoSub{-3}\def\VnSubThreeSub{4}\def\VPlusnSubThreeSub{+4}\def\VMinusnSubThreeSub{-4}\def\VnSubFiveSub{1}\def\VPlusnSubFiveSub{+1}\def\VMinusnSubFiveSub{-1}\def\Vn{3240}\def\VPlusn{+3240}\def\VMinusn{-3240}$

Factor the following number  $\Vn $.


answer

Not attempted yet

redo problem



Comments

$\def\Va{-2}\def\VPlusa{-2}\def\VMinusa{+2}\def\Vb{5}\def\VPlusb{+5}\def\VMinusb{-5}\def\Vc{-9}\def\VPlusc{-9}\def\VMinusc{+9}\def\Vd{3}\def\VPlusd{+3}\def\VMinusd{-3}\def\Ve{-6}\def\VPluse{-6}\def\VMinuse{+6}$

Solve for $y$.$\Va y\VPlusc =\Vb \VPluse y$


answer

Not attempted yet

redo problem



Comments

Simplify and leave as a fraction.$$\frac{2\left(10-4\right)-5\left(-1-3\right)}{-8\left(6-3\right)-4\left(14-9\right)}$$


answer

Not attempted yet

redo problem



Comments

$\def\Va{9}\def\VPlusa{+9}\def\VMinusa{-9}\def\Vb{6}\def\VPlusb{+6}\def\VMinusb{-6}\def\Vc{11}\def\VPlusc{+11}\def\VMinusc{-11}$

Add$$\frac{\Vb x}{\Va }+\frac{\Vc y}{\Va }$$


answer

Not attempted yet

redo problem



Comments

$\def\Vn{10}\def\VPlusn{+10}\def\VMinusn{-10}\def\VpSubOneSub{3}\def\VPluspSubOneSub{+3}\def\VMinuspSubOneSub{-3}\def\VqSubOneSub{7}\def\VPlusqSubOneSub{+7}\def\VMinusqSubOneSub{-7}\def\Vm{-2}\def\VPlusm{-2}\def\VMinusm{+2}\def\VpSubTwoSub{4}\def\VPluspSubTwoSub{+4}\def\VMinuspSubTwoSub{-4}\def\VqSubTwoSub{8}\def\VPlusqSubTwoSub{+8}\def\VMinusqSubTwoSub{-8}$

Simplify and write as a fraction.$$\Vn \frac{\VpSubOneSub }{\VqSubOneSub }+\left(\Vm \frac{\VpSubTwoSub }{\VqSubTwoSub }\right)$$


answer

Not attempted yet

redo problem



Comments

$\def\VpSubOneSub{-15}\def\VPluspSubOneSub{-15}\def\VMinuspSubOneSub{+15}\def\VqSubOneSub{6}\def\VPlusqSubOneSub{+6}\def\VMinusqSubOneSub{-6}\def\VpSubTwoSub{12}\def\VPluspSubTwoSub{+12}\def\VMinuspSubTwoSub{-12}\def\VqSubTwoSub{6}\def\VPlusqSubTwoSub{+6}\def\VMinusqSubTwoSub{-6}\def\Va{\frac{-5}{2}}\def\VPlusa{+\frac{-5}{2}}\def\VMinusa{-\frac{-5}{2}}\def\Vb{2}\def\VPlusb{+2}\def\VMinusb{-2}$

Solve for $m$. \begin{align*} {m\VPlusa }&={\Vb } \end{align*}


answer

Not attempted yet

redo problem



Comments

$\def\Va{4}\def\VPlusa{+4}\def\VMinusa{-4}\def\Vc{16}\def\VPlusc{+16}\def\VMinusc{-16}\def\Vb{2}\def\VPlusb{+2}\def\VMinusb{-2}\def\VA{32}\def\VPlusA{+32}\def\VMinusA{-32}\def\Vd{4}\def\VPlusd{+4}\def\VMinusd{-4}\def\VB{8}\def\VPlusB{+8}\def\VMinusB{-8}\def\VpSubxSub{1}\def\VPluspSubxSub{+1}\def\VMinuspSubxSub{-1}\def\VpSubySub{7}\def\VPluspSubySub{+7}\def\VMinuspSubySub{-7}\def\VqSubxSub{13}\def\VPlusqSubxSub{+13}\def\VMinusqSubxSub{-13}\def\VqSubySub{13}\def\VPlusqSubySub{+13}\def\VMinusqSubySub{-13}$

Simplify. Assume all variables are non-negative.$${\sqrt[\,]{\VA x^{\VpSubxSub }y^{\VpSubySub }}}{\sqrt[]{\VB x^{\VqSubxSub }y^{\VqSubySub }}}$$


answer

Not attempted yet

redo problem



Comments

$\def\Vm{16}\def\VPlusm{+16}\def\VMinusm{-16}\def\Ve{16}\def\VPluse{+16}\def\VMinuse{-16}$

For every kilogram of a child's weight, pediatritian prescribes $\Ve \umg$ of fever reducer. If Isabella weights $\Vm \ukg$, how many milligrams  $g$  of fever reducer will her pediatritian prescribe?


answer

Not attempted yet

redo problem



Comments

$\def\Va{122}\def\VPlusa{+122}\def\VMinusa{-122}$

A blue whale weights $\Va $ metric tons. Convert the weight to kilograms.


answer

Not attempted yet

redo problem



Comments

One number is four more than six times another. Their sum is negative thirty one. Find the two numbers.


answer

Not attempted yet

redo problem



Comments

Mika has a total of $9$ dollars in quarters and nickels on his desk. The number of nickels is seven times the number of quarters. How many of each coin does he have?

Let $x$ represent the number of quarters.


answer

Not attempted yet

redo problem



Comments

Use the Pythagorean Theorem to find the length of the hypotenuse of the following triangle. 



answer

Not attempted yet

redo problem



Comments

$\def\Vc{277}\def\VPlusc{+277}\def\VMinusc{-277}\def\Va{115}\def\VPlusa{+115}\def\VMinusa{-115}$

Amy bought a triangular tent for her trip. The dimensions of the tent are shown in the figure below. Given that $a=115\,\ucm,\,c=277\,\ucm$, use the Pythagorean Theorem to find the height of the triangular tent.

 


answer

Not attempted yet

redo problem



Comments

$\def\Vb{8}\def\VPlusb{+8}\def\VMinusb{-8}\def\Vh{10}\def\VPlush{+10}\def\VMinush{-10}\def\VA{\dfrac{bh}{2}}\def\VPlusA{+\dfrac{bh}{2}}\def\VMinusA{-\dfrac{bh}{2}}\def\Vr{9}\def\VPlusr{+9}\def\VMinusr{-9}\def\VB{\pi r^{2}}\def\VPlusB{+\pi r^{2}}\def\VMinusB{-\pi r^{2}}\def\VS{B-A}\def\VPlusS{+B-A}\def\VMinusS{-B-A}$

What is the area of the shaded region below?


answer

Not attempted yet

redo problem



Comments

$\def\Va{-8}\def\VPlusa{-8}\def\VMinusa{+8}\def\Vb{6}\def\VPlusb{+6}\def\VMinusb{-6}\def\Vc{6}\def\VPlusc{+6}\def\VMinusc{-6}\def\Vd{16}\def\VPlusd{+16}\def\VMinusd{-16}\def\Ve{5}\def\VPluse{+5}\def\VMinuse{-5}\def\Vf{6}\def\VPlusf{+6}\def\VMinusf{-6}\def\Vy{\left(a+d\right)x^{2}+\left(b+e\right)x+\left(c+f\right)}\def\VPlusy{+\left(a+d\right)x^{2}+\left(b+e\right)x+\left(c+f\right)}\def\VMinusy{-\left(a+d\right)x^{2}+\left(b+e\right)x+\left(c+f\right)}$

Simplify $$y=\left(\Va x^{2}\VPlusb x\VPlusc \right)+\left(\Vd x^{2}\VPluse x\VPlusf \right)$$


answer

Not attempted yet

redo problem



Comments

$\def\VqSubOneSub{-4}\def\VPlusqSubOneSub{-4}\def\VMinusqSubOneSub{+4}\def\VqSubTwoSub{5}\def\VPlusqSubTwoSub{+5}\def\VMinusqSubTwoSub{-5}\def\VqSubThreeSub{-1}\def\VPlusqSubThreeSub{-1}\def\VMinusqSubThreeSub{+1}\def\VqSubFourSub{4}\def\VPlusqSubFourSub{+4}\def\VMinusqSubFourSub{-4}\def\VqSubFiveSub{-3}\def\VPlusqSubFiveSub{-3}\def\VMinusqSubFiveSub{+3}\def\VqSubSixSub{-3}\def\VPlusqSubSixSub{-3}\def\VMinusqSubSixSub{+3}\def\VqSubSevenSub{4}\def\VPlusqSubSevenSub{+4}\def\VMinusqSubSevenSub{-4}\def\VqSubEightSub{-5}\def\VPlusqSubEightSub{-5}\def\VMinusqSubEightSub{+5}\def\VqSubNineSub{7}\def\VPlusqSubNineSub{+7}\def\VMinusqSubNineSub{-7}\def\VqSubOneZeroSub{7}\def\VPlusqSubOneZeroSub{+7}\def\VMinusqSubOneZeroSub{-7}\def\VpSubOneSub{4}\def\VPluspSubOneSub{+4}\def\VMinuspSubOneSub{-4}\def\VpSubTwoSub{2}\def\VPluspSubTwoSub{+2}\def\VMinuspSubTwoSub{-2}\def\VpSubThreeSub{3}\def\VPluspSubThreeSub{+3}\def\VMinuspSubThreeSub{-3}$

Simplify the following expression using the properties of exponents
$$\left(\frac{\VpSubOneSub a^{\VqSubOneSub }b^{\VqSubTwoSub }}{a^{\VqSubThreeSub }b^{\VqSubFourSub }}\right)^{\VqSubFiveSub }\left(\frac{\VpSubTwoSub a^{\VqSubSixSub }b^{\VqSubSevenSub }}{\VpSubThreeSub a^{\VqSubEightSub }b^{\VqSubNineSub }}\right)^{\VqSubOneZeroSub }\,$$Use only positive exponents in your answer.


answer

Not attempted yet

redo problem



Comments

Find the values for each of the coordinates on the plot below:

 


answer

Not attempted yet

redo problem



Comments

$\def\Va{-7}\def\VPlusa{-7}\def\VMinusa{+7}\def\Vb{7}\def\VPlusb{+7}\def\VMinusb{-7}\def\Vy{b}\def\VPlusy{+b}\def\VMinusy{-b}\def\Vx{\frac{-b}{a}}\def\VPlusx{+\frac{-b}{a}}\def\VMinusx{-\frac{-b}{a}}$

Find the $x$ and $y$ intercepts for the following linear equation

$y=\Va x\VPlusb $


answer

Not attempted yet

redo problem



Comments

$\def\Vm{-2}\def\VPlusm{-2}\def\VMinusm{+2}\def\Vb{1}\def\VPlusb{+1}\def\VMinusb{-1}\def\VxSubOneSub{-5}\def\VPlusxSubOneSub{-5}\def\VMinusxSubOneSub{+5}\def\VxSubTwoSub{1}\def\VPlusxSubTwoSub{+1}\def\VMinusxSubTwoSub{-1}\def\VySubOneSub{11}\def\VPlusySubOneSub{+11}\def\VMinusySubOneSub{-11}\def\VySubTwoSub{-1}\def\VPlusySubTwoSub{-1}\def\VMinusySubTwoSub{+1}$

Find the slope of the line that includes points $\left(\VxSubOneSub ,\VySubOneSub \right)\,\text{and}\,\left(\VxSubTwoSub ,\VySubTwoSub \right).$


answer

Not attempted yet

redo problem



Comments