Activity Report

Guest

Log In

Calculus 1

Demo Worksheet

HOW YOU DID

0 / 125.5 pts

You can try and practice on 27 more questions

review

Let's have another look at your answers

Given the function  $f\left(x\right)$  shown below, evaluate the following:
 




A)   $\lim_{x\to -3^{-}}f\left(x\right)$

B)   $\lim_{x\to 0}f\left(x\right)$

C)   $\lim_{x\to -3}f\left(x\right)$

 

Choose D.N.E. from the toolbox if the limit does not exists.


answer

Not attempted yet

redo problem



Comments

$\def\Vfx{3x-4}\def\VPlusfx{+3x-4}\def\VMinusfx{-3x-4}$

Evaluate the  $\lim_{x\to 4}f\left(x\right)$,  where\begin{align*} {f\left(x\right)}&={\begin{cases} {5\cos x}&{x\leq3.9}\\ {3x-4}&{x>3.9}\\ \end{cases}\,} \end{align*}


answer

Not attempted yet

redo problem



Comments

Evaluate   \begin{gather*} {\lim_{x\to 4}\frac{3x^{2}-12x}{x^{2}-16}} \end{gather*}


answer

Not attempted yet

redo problem



Comments

Evaluate   \begin{gather*} {\lim_{x\to 1}\frac{{\sqrt[\,]{x+4}}-{\sqrt[\,]{6-x}}}{x-1}\,} \end{gather*}


answer

Not attempted yet

redo problem



Comments

$\def\Vfx{2x^{4}-7}\def\VPlusfx{+2x^{4}-7}\def\VMinusfx{-2x^{4}-7}$

Let   $$f\left(x\right)=\begin{cases} {2x^{4}-7}&{x<0}\\ {0}&{x=0}\\ {\sin x+2}&{x>0}\\ \end{cases}$$Evaluate the limit   $\lim_{x\to 0^{-}}f\left(x\right)$.


answer

Not attempted yet

redo problem



Comments

Evaluate
\begin{gather*} {\lim_{x\to -\infty}\frac{1-2x-4x^{2}}{4x^{2}+5}} \end{gather*}


answer

Not attempted yet

redo problem



Comments

$\def\Vrx{2-x}\def\VPlusrx{+2-x}\def\VMinusrx{-2-x}\def\Vlx{x^{2}-10}\def\VPluslx{+x^{2}-10}\def\VMinuslx{-x^{2}-10}$

Find all values of  $c$  for which the following function is continuous.
$$f\left(x\right)=\begin{cases} {x^{2}-10}&{x\leq c}\\ {2-x}&{x>c}\\ \end{cases}$$


answer

Not attempted yet

redo problem



Comments

It follows from the Intermediate Value Theorem (IVT)  that there exists at least one real number $c$ such that  $$4^{c}=c^{2}.$$Justify.


answer

Not attempted yet

redo problem



Comments

Find the values of  $a$  and  $b$  for which
$$f\left(x\right)=\begin{cases} {x^{2}}&{x\leq5}\\ {ax+b}&{x>5}\\ \end{cases}$$is differentiable everywhere.

You may use the facts that  $\left(x^{2}\right)^{\prime}=2x$  and   $\left(ax+b\right)^{\prime}=a$.


answer

Not attempted yet

redo problem



Comments

$\def\Vfx{\frac{3}{x+1}}\def\VPlusfx{+\frac{3}{x+1}}\def\VMinusfx{-\frac{3}{x+1}}$

Use the definition of the derivative to evaluate the derivative of the function$$f\left(x\right)=\frac{3}{x+1}$$

 

answer

Not attempted yet

redo problem



Comments

$\def\Va{3}\def\VPlusa{+3}\def\VMinusa{-3}\def\Vyx{\left(\frac{3x+1}{3x-2}\right)^{2}}\def\VPlusyx{+\left(\frac{3x+1}{3x-2}\right)^{2}}\def\VMinusyx{-\left(\frac{3x+1}{3x-2}\right)^{2}}\def\Vm{y^{\prime}\left(x\right)}\def\VPlusm{+y^{\prime}\left(x\right)}\def\VMinusm{-y^{\prime}\left(x\right)}\def\VmSubThreeSub{y^{\prime}\left(3\right)}\def\VPlusmSubThreeSub{+y^{\prime}\left(3\right)}\def\VMinusmSubThreeSub{-y^{\prime}\left(3\right)}$

Find the slope of the tangent line to the graph of the function   $y\left(x\right)=\left(\dfrac{3x+1}{3x-2}\right)^{2}$  at the point  $x=3$.


answer

Not attempted yet

redo problem



Comments

Differentiate  $$\dfrac{2-x^{2}}{3x^{2}+7}$$


answer

Not attempted yet

redo problem



Comments

Differentiate  $$\left(e^{x}-1\right)\left(2e^{x}+1\right)$$


answer

Not attempted yet

redo problem



Comments

$\def\Vyx{e^{3x}-5}\def\VPlusyx{+e^{3x}-5}\def\VMinusyx{-e^{3x}-5}$

Using the derivative, determine whether   $y\left(x\right)=e^{3x}-5$  describes a straight line.


answer

Not attempted yet

redo problem



Comments

Evaluate 
\begin{gather*} {\lim_{x\to 0}\frac{\sin x^{37}+3x^{7}e^{x^{99}}}{\sin^{7}x}} \end{gather*}


answer

Not attempted yet

redo problem



Comments

$\def\Va{-8}\def\VPlusa{-8}\def\VMinusa{+8}\def\Vb{-2}\def\VPlusb{-2}\def\VMinusb{+2}\def\Vh{3\left(t-6\right)\left(t-1\right)}\def\VPlush{+3\left(t-6\right)\left(t-1\right)}\def\VMinush{-3\left(t-6\right)\left(t-1\right)}\def\Vc{-15}\def\VPlusc{-15}\def\VMinusc{+15}\def\Vd{48}\def\VPlusd{+48}\def\VMinusd{-48}\def\Vst{e^{t^{3}-15t^{2}+48t}}\def\VPlusst{+e^{t^{3}-15t^{2}+48t}}\def\VMinusst{-e^{t^{3}-15t^{2}+48t}}\def\Vvt{s^{\prime}\left(t\right)}\def\VPlusvt{+s^{\prime}\left(t\right)}\def\VMinusvt{-s^{\prime}\left(t\right)}$

Position of a particle at time  $t$  is given by  $s\left(t\right)=e^{t^{3}\VPlusc t^{2}\VPlusd t}$. For which values of  $t$  is the velocity of the particle zero?


answer

Not attempted yet

redo problem



Comments

Compute the derivative of   $$\cos\left(x^{2}+{\sqrt[]{x^{2}+1}}\right)$$


answer

Not attempted yet

redo problem



Comments

Using the identity  $\sin2x=2\sin x\cos x$, derive a similar identity for  $\cos2x$.


answer

Not attempted yet

redo problem



Comments

Find the derivative of   $$\dfrac{\ln x}{x^{6}}$$


answer

Not attempted yet

redo problem



Comments

$\def\Vy{\left(1-6x\right)^{\cos x}}\def\VPlusy{+\left(1-6x\right)^{\cos x}}\def\VMinusy{-\left(1-6x\right)^{\cos x}}$

Find the derivative of
$$y=\left(1-6x\right)^{\cos x}\,$$


answer

Not attempted yet

redo problem



Comments

Find  $\diff{y}{x}$  if   $xy+e^{x}+e^{y}=1$.


answer

Not attempted yet

redo problem



Comments

Differentiate  $$\sec^{-1}\left(-x^{2}-2\right)$$


answer

Not attempted yet

redo problem



Comments

$\def\Va{4}\def\VPlusa{+4}\def\VMinusa{-4}\def\Vb{8.98-5}\def\VPlusb{+8.98-5}\def\VMinusb{-8.98-5}\def\Vfx{{\sqrt[\,]{x+5}}}\def\VPlusfx{+{\sqrt[\,]{x+5}}}\def\VMinusfx{-{\sqrt[\,]{x+5}}}$

Find an approximation to  ${\sqrt[\,]{8.98}}$  using the linearization of the function  $f\left(x\right)={\sqrt[\,]{x+5}}$ .


answer

Not attempted yet

redo problem



Comments

$\def\Vxt{}\def\VPlusxt{+}\def\VMinusxt{-}\def\Vyt{}\def\VPlusyt{+}\def\VMinusyt{-}\def\Vz{\frac{x^{2}}{2}+\frac{y^{2}}{8}}\def\VPlusz{+\frac{x^{2}}{2}+\frac{y^{2}}{8}}\def\VMinusz{-\frac{x^{2}}{2}+\frac{y^{2}}{8}}$

Find $\diff{z}{t}$ at $(x,y)=(4,2)$ if $z=\frac{x^{2}}{2}+\frac{y^{2}}{8}$, $\diff{x}{t}=-2$, and $\diff{y}{t}={6}$.


answer

Not attempted yet

redo problem



Comments

$\def\Vht{}\def\VPlusht{+}\def\VMinusht{-}\def\Vr{\frac{h}{3}}\def\VPlusr{+\frac{h}{3}}\def\VMinusr{-\frac{h}{3}}\def\VV{\frac{1}{27}\pi h^{3}}\def\VPlusV{+\frac{1}{27}\pi h^{3}}\def\VMinusV{-\frac{1}{27}\pi h^{3}}$

A water tank of the shape of an inverted circular cone with base radius $2\um$ and height $6\um$ is pumped water into at a rate $3\,\um^{3}/\umin$. At what rate the water is rising when the water is $4\um$ deep?
Let  $V$  be the volume of the water,  $r$,  and  $h$  be the radius of the surface, and the height at time  $t$,  where $t$ is measured in minutes.


answer

Not attempted yet

redo problem



Comments

$\def\Vxt{}\def\VPlusxt{+}\def\VMinusxt{-}\def\Vyt{}\def\VPlusyt{+}\def\VMinusyt{-}\def\Vz{{\sqrt[ ]{x^{2}+y^{2}}}}\def\VPlusz{+{\sqrt[ ]{x^{2}+y^{2}}}}\def\VMinusz{-{\sqrt[ ]{x^{2}+y^{2}}}}$

A cyclist A is approaching an intersection from west at $50\ukm/\uhr$. Another cyclist B is approaching the same intersection along a perpendicular direction from south at $60\ukm/\uhr$.



At what rate are the cyclists approaching each other when the first cyclist is  $x=0.3\ukm$ and the other is  $y=0.4\ukm$ from the intersection, respectively?


answer

Not attempted yet

redo problem



Comments

$\def\Vy{{\sqrt[\,]{r^{2}-x^{2}}}}\def\VPlusy{+{\sqrt[\,]{r^{2}-x^{2}}}}\def\VMinusy{-{\sqrt[\,]{r^{2}-x^{2}}}}\def\VAx{\left(2x\right)y}\def\VPlusAx{+\left(2x\right)y}\def\VMinusAx{-\left(2x\right)y}$

Find the area of the largest rectangle inscribed in a semicircle of radius $r$.


answer

Not attempted yet

redo problem



Comments